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The Sato-Tate Conjecture

Proposed by Mikio Sato and John Tate around 1960.
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The Sato-Tate Conjecture (Cont.)

Let C be a smooth, projective, genus g curve over Q.
- Originally posed when A is an elliptic curve (g = 1), can be
extended to higher-genus curves via Jac(C).

Denote the normalized L-polynomial of primes p of good reduction
for C as

L(CT) =T+ aiT97 " + a9 + .+ TP+ a T+ 1.

As p — oo, we can realize distributions of L,(C, T)'s coefficients as

Note: For each prime p t £ of good reduction, Frob, € Gal(F/F) is mapped to a conjugacy class under pa ¢ in
ST(Jac(Cuz)). The conjecture is equivalent to talking about limiting distributions of Frobenius elements’
conjugacy classes
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Let C be a smooth, projective, genus g curve over Q.
- Originally posed when A is an elliptic curve (g = 1), can be
extended to higher-genus curves via Jac(C).

Denote the normalized L-polynomial of primes p of good reduction
for Cas
L(CT) =T+ aiT97 " + a9 + .+ TP+ a T+ 1.

As p — oo, we can realize distributions of L,(C, T)'s coefficients as

(Generalized) Sato-Tate Conjecture

As p — oo, the distribution of coefficients of L,(C, T) converges to
the distributions of ST(Jac(C))'s conjugacy classes’ charpoly
coefficients via the Haar measure.

Note: For each prime p t £ of good reduction, Frob, € Gal(F/F) is mapped to a conjugacy class under pa ¢ in
ST(Jac(Cuz)). The conjecture is equivalent to talking about limiting distributions of Frobenius elements’
conjugacy classes



We are studying the family of (hyperelliptic) curves
Cpz 1 V° =X 1,

where p is an odd prime.
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Computing Sato-Tate Groups

We need to compute two objects:

ST%(Jac(C2)) and  ST(Jac(Cpz))/ ST (Jac(Cpe)).



Computing ST(Jac(Cp2))/ STO(Jac(sz))

First, we have that the endomorphism field of Jac(Cy) is Q(¢p2)
([GGL24, Prop. 3.51]). By [GGL25, Thm. 7.2.12], this is also its connected
monodromy field. So,

ST(Jac(Cp2))/ ST’ (Jac(C)) = Gal(Q(¢2)/Q).

Moreover

Gal(Q(¢»)/Q) = (2/p°Z) ",
50 ST(Jac(C2))/ ST (Jac(Cy2)) is cyclic (because (Z/p?Z)* is) and
has order ¢(p?).
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Let Z := —diag({p2, ¢2). Endomorphisms of Jac(C,») are of the form
o =diag(2,2%,2°, ..., 79),

where g = (p? — 1)/2 is the genus of Cp.
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Computing ST(Jac(C,2))/ ST°(Jac(C,2)) (Cont.)

Let Z := —diag({p2, ¢2). Endomorphisms of Jac(C,») are of the form
o =diag(2,2%,2°, ..., 79),

where g = (p? — 1)/2 is the genus of Cp.

By computing a (oq) = Gal(Q((2)/Q) (through Sage), the action of o4
on a (?°Z' = Z9%) either only permutes or permutes and conjugates
entries of a.

Let | be the 2 x 2 identity matrix,

and (n),. denote n (mod p?).



Computing ST(Jac(C,2))/ ST°(Jac(C,2)) (Cont.)

Proposition [CGHM25]

The 2g x 2g matrix « (in USp(2g)) defined by

I ifj=(ai)p
Ylijl=4¢1 ifj=p*—(ai)p
0 otherwise.

generates the component group of ST(Jac(Cp2)).

Proof idea:

- Show that yay™" = “2ac  (shows that v € ST(Jac(C,2)))
- |yl = ¢(p?) (order is equal to that of the component group).
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When p =5, using o, as a generator for Gal(Q(¢{zs)/Q) (found via

Sage) gives
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(25 —=1)/2=12. So, v is a 24 x 24 matrix. Forp =7, ~vis a

48 x 48 matrix!

Here, g



The Identity Component, ST°(Jac(C,2))

Since Jac(Cpe) is an abelian variety with CM, we have that
ST%(Jac(Cp2)) = Hg(Jac(Cp2)),

where Hg(Jac(Cy2)) is the of Jac(Cp2).

Note: We embed U(1) in SU(2) via u — U = diag(u, t), and U(1)" := (diag(U, ..., Un) | U; € U(1)) 9



The Identity Component, ST°(Jac(C,2))

Since Jac(Cpe) is an abelian variety with CM, we have that
ST%(Jac(Cp2)) = Hg(Jac(Cp2)),

where Hg(Jac(C2)) is the Hodge group of Jac(Cp2).
We have that

Proposition [CGHM25]

Hg(Jac(C)) = U(1)?', where ¢’ = ¢(p?)/2.
Proof idea:

» Jac(Cpe) ~ Jac(Cp) x X2 and  MT(Jac(Cpe)) = MT(X,2) by
[GGL24]

* Hg(Jac(Cp2)) = Hg(Xp2) = L(Xp2) = V(1)

Note: We embed U(1) in SU(2) via u — U = diag(u, t), and U(1)" := (diag(U, ..., Un) | U; € U(1))



The Identity Component (Cont.)

This result tells us that Hg(Jac(Cp2)) is smaller than expected—since
Jac(Cp) has CM, it'd "normally” be isomorphic to U(1)9.
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This is reflected by the fact that Jac(C,2) is degenerate (by [Goo24]).

Definition
An abelian variety A is degenerate if its Hodge ring

dim(A)

=2 FA

where %%(A) is the C-span of the Hodge classes of codimension d
on A, contains (Hodge) classes—Hodge classes not
generated by classes of codimension d = 1 (i.e,, divisor classes).



The Identity Component (Cont.)

This result tells us that Hg(Jac(Cp2)) is smaller than expected—since
Jac(Cp) has CM, it'd "normally” be isomorphic to U(1)9.

This is reflected by the fact that Jac(C,2) is degenerate (by [Goo24]).

Definition
An abelian variety A is degenerate if its Hodge ring

dim(A)

=2 FA

where %%(A) is the C-span of the Hodge classes of codimension d
on A, contains (Hodge) classes—Hodge classes not
generated by classes of codimension d = 1 (i.e,, divisor classes).

Since ST(Jac(Cp2)) € USp(2g) and g — g’ = (p — 1)/2, if we identified
an element of Hg(Jac(C,2)) with a U € U(1)9,



Extracting the Dependencies

Informally,
([BLO4, Thm. 17.3.3]). So, if U € Hg(Jac(Cy)) (as a
matrix) and v is a Hodge class (in the Hodge ring), then

U-v=w.

This action is how we'll extract the extra relations.
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Extracting the Dependencies

Informally,
([BLO4, Thm. 17.3.3]). So, if U € Hg(Jac(Cy)) (as a
matrix) and v is a Hodge class (in the Hodge ring), then

U-v=w.

This action is how we'll extract the extra relations.

Identifying the Hodge group with an element from U(1)9’ already
incorporates the relations from the divisor classes—it's just

diag(U%U'\aU23U27-"Ug/vUQ/)ﬂ
where U; € U(1) and U;U; = 1. The non-divisor class Hodge classes
have to come from higher codimensions.

We look at the Hodge classes—exceptional classes
not generated by classes of lower codimension.

1



Redefining Indecomposable Classes

In [Shi82], Shioda defines a set of tuples that act as an index set for
Hodge classes of codimension d:

Definition [CGHM25]

Let m be a positive, odd integer and d be an integer satisfying
1< d < 221 We define the set

B = (5= (0102, bu)

to be the set of tuples of length 2d satisfying the following
properties:

1. 1§b1<b2<--~<b2d§m—1;

2. Zg bi =0 (mod m);

3. |t- Bl =dforallt e (Z/mZ)*, where |t- §| = Z,zL(tb,-)m/m.



Redefining Indecomposable Classes (Cont.)

Namely, he showed that there is a correspondence between tuples in
259 to Hodge classes:

[Shi82, Thm. 5.2]

Assume m is odd. The Hodge classes on the Jacobian variety
Jac(Cp) have the following description:

#(Jac(Cn))= @  Cuwp A Awp,,.




Redefining Indecomposable Classes (Cont.)

So we can frame exceptional-ness and indecomposible-ness in terms
of tuples:

Definition [CGHM25]

We say that a tuple g € B9, is exceptional if it's not entirely made
up of pairs b, b; such that b; + b; = 0 (mod m).

We say that 8 € B9 is indecomposable if no proper subset (with an
even number of elements) of {by, b, ..., by} adds to a multiple of
m. Otherwise, we say that 3 is decomposable.

Example: m=p?=9,d=(3+1)/2=2
- (1,4,6,7) and (2,3,5, 8) are exceptional and indecomposable,
but (1,2,7,8) isn't exceptional

Example: m = p> =25,d =4
- (1,2,6,11,16,20,21,23) is exceptional, but not indecomposable



In the proof of [Shi82, Lemma 5.5], Shioda defined a family of
indecomposable tuples of codimension d = (p + 1)/2: For
1<i1<p-—1, define

(We write 8; to signify the tuple’s entries have been permuted to be
an element of 8Y)
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It turns out, all indecomposable tuples (when m = p?) come from .
Meaning, the only codimension where indecomposable classes exist
is d = (p +1)/2 (ICGHM25, Thm. 3.21]).



In the proof of [Shi82, Lemma 5.5], Shioda defined a family of
indecomposable tuples of codimension d = (p + 1)/2: For
1<i1<p-—1, define

(We write 8; to signify the tuple’s entries have been permuted to be
an element of 8Y)

It turns out, all indecomposable tuples (when m = p?) come from .
Meaning, the only codimension where indecomposable classes exist
is d = (p +1)/2 (ICGHM25, Thm. 3.21]).

Furthermore, there are exactly p — 1 many of these tuples when
m = p? ([CGHM25, Thm. 3.21]).



The Indecomposable Classes Characterized

Using the above correspondence, this means

[CGHM?25, Cor. 3.22]

From each indecomposable tuple

the indecomposable Hodge classes of codimension (p +1)/2 are
given by

Vi = Wj A Witp NWigop A AWipp—1)p N Wp(p—i)s

where 1<i<p-—1.



An Adjustment

We'll modify the elements of 5; such that every entry b; with
j>d= pT“ is written as b; — p?. This modification will negate
elements of the tuple whose value is greater than %z This
corresponds to expressing the differential wy, as @y _y,.

After modifying the tuples in this way, we obtain pairs of tuples such
that each g; is paired with the corresponding tuple 3,_;, where both
are negatives of each other.

Ex: p? =9

. /31 :(1,4,6,7)%(’],4,73,72)<—>V1 = w1 Awy Aw3 A\ w
. 62:(273,5,8)%(2,3,—4,—1)HI/ZZWQ/\OJg/\wz,/\E‘j

We read off the effect of the Hodge group in every new j3;. So, it's
sufficient to just focus on the tuples 3; where 1 < i < pT‘T



New Expression of Indecomposable Classes

From that adjustment of each 3;, we obtain a new expression of the
indecomposable Hodge classes

[CGHM?25, Cor. 3.26]

Let1<i< 21 Then

Vi:w,Awi+p/\wi+2p/\~-~/\w/-+ppT—w /\wppT—wi(-/\“-/\wp_,‘/\wp,‘.



The Indecomposable Classes Characterized (Cont.)

By the group action U - v; = v, when v; is an indecomposable class
we have

U-I/,-:U~(w,-Aw,-H)/\w,-+2pA~~-/\w[+pp%w Awpp%w_,A--wwp,,-Awp,-)

= (UilippUisop - - UjpostUpp=t - Up—iUpi)Vi.

19



The Indecomposable Classes Characterized (Cont.)

By the group action U - v; = v, when v; is an indecomposable class
we have

U-vi=U- (Wi Awiyp AWigap A=+ A N@ A NWp—i NTWpi)

Witpez! N Wpeslj

= (Uillj4pUiszp -+ Uiy pe=tUpest +Up—ilpi V.
Since the Hodge group fixes elements from the Hodge ring, we have
that

UillippUigop -~ - Ujpetlppt - - Up—jlipi = 1.
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The Indecomposable Classes Characterized (Cont.)

By the group action U - v; = v, when v; is an indecomposable class

we have
U.y,-:U~(w,-Aw,-H)/\w,-+2pA-~-/\w[+pprw /\wpprw_i/\"'Awp—[Awp/')
= (uU:u; U; e . U p— U?UV
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Since the Hodge group fixes elements from the Hodge ring, we have
that

UillippUigop -~ - Ujpetlppt - - Up—jlipi = 1.

The largest subscriptis i+ pqu, so isolating it gives

U, p—1 = UiljypUjiop - U s U p1 i+ Up—_jUp;

i+pE— F i+pEB="~p

and
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we have
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Since the Hodge group fixes elements from the Hodge ring, we have
that

UillippUigop -~ - Ujpetlppt - - Up—jlipi = 1.

The largest subscriptis i+ pqu, so isolating it gives

U, p—1 = UiljppUjiop---U s U p1 i+ Up—_jUp;

i+pE— F i+pEB="~p

and

These are exactly the missing relations!
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The Identity Component, Revisited

By the previous slide, we can now express ST°(Jac(C,)):

[CGHM25, Prop. 4.1]

The identity component of the Sato-Tate group of Jac(Cp) is
isomorphic to U(1)9". We can identify elements of the identity
component with matrices U = diag(Us, U,, ..., Ug) in U(1)9 where

Uippest = UiligpUigap -~ Uy poaUppa - UpiUpi

for1<i< el

Recall U; = diag(uj, Uj) 20



Example of Identity Component: Cys

Let p = 5. The genus of Cys is g = (25 — 1)/2 = 12. The only
indecomposable tuples are

(1,6,11,16,20,21), (2,7,12,15,17,22), (3,8,10,13,18,23), (4,5, 9, 14,19, 24)
and they're all of the form g; with 1 < i < 4.

We select the first two tuples and adjust each entry of the tuple
whose value is greater than p?/2 = 12.5 to obtain

B =(1,6,11,-9, =5, —4) B =(2,7,12,-10, -8, —3).
These correspond to the Hodge classes
V) = wi Awg Awn Ao Aws A, and vy = wy Awy Awip Awig Awg Aws.
Let U € U(1)9. We get the following relations among entries of U
Un = ThUsUslsly and Uy = UpU3lzUgUno,
giving us the identity component

U = diag(Us, Uy, ..., Uro, UrUsUsUgUs, UyUsU7UsUno). 2



The Sato-Tate Group of Jac(Cp:)

[

letg= pT” be the genus of the curve C, and let g’ = @. The
Sato-Tate group of Jac(Cp2), up to isomorphism in USp(2g), is given
by

CGHM25, Thm. 4.6]

‘

ST(Jac(Cp2)) = (U(1)?', ),
where the embedding of U(1)?" in USp(2g) is described in Slide 21.



(a;) Moment Statistics of Cys

The numerical moments coming from the a; coefficient of the
normalized L-polynomial were computed up to primes p < 2%

M; My Mg Mg
a; | 2.009 90.848 9452.007 1438061.241
w | 2 90 9344 1419866

Table 1: Table of ai- and pi-moments for Cs : > = x* — 1 (with p < 2%).

23
Figure 1: Histogram of the a;-coefficients for Cps : y? = x» — 1.



Thank you!

Read our paper!
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Bonus: Sato-Tate Group Definition

For an abelian variety A of dimension g over a field F and prime ¢, the
Galois action on the Tate module is given by an ¢-adic representation

PAL . GaI(F/F) — Aut(\/g) = GLQg_’Q[,

where V, is the rational Tate module.

The ¢-adic monodromy group of A, denoted as Ga g, is the Zariski
closure of the image of this map over GL,g g,. Additionally, let
Glu =GarN szg,@k.

Definition [Goo24, Sec. 2.4]

The of A, denoted as ST(A), is a maximal compact
Lie subgroup of G)u ®q, C contained in USp(29).



Bonus: Moment Statistics

Moment statistics from the ST(Jac(C2)) are called
moments, whereas those from the normalized L-polynomials are
called moments.



Bonus: Moment Statistics

Moment statistics from the ST(Jac(C2)) are called
moments, whereas those from the normalized L-polynomials are
called moments.

By the isomorphism of ST(Jac(C,2)), we can compute moments by
working with (U(1)9', v) instead.



Bonus: Moment Statistics (Cont. + Some Background)

For the unitary group U(1), the trace map tr on a random element
U € U(1) is given by z :=tr(U) = u + T = 2 cos(#), where u = €. Then
dz = —2sin(0)d6 and

1 dz 1

Huy = v Ed@

gives a uniform measure of U(1) on the eigenangle 6 € [-n, 7] (see
[Sut19, Section 2]). The n®" moment M, [u] is the expected value of
¢n : Z— Z" with respect to u, computed as

Ml = (),

where | = [-2,2].



Bonus: Moment Statistics (Cont.)

Let U be a random matrix in ST°(Jac(C,2)) and ~ be the component
group generator. Denote
k
gi
to be the coefficient of T' in the characteristic polynomial of Uy*
(where 0 < k < ¢(p?)).

Note: Froby is defined up to conjugacy, so we can think of pa ¢(Frobp)-a matrix-as representing a conjugacy
class. Thus, working with ST(A) charpolys means inherently working with its conjugacy classes.



Bonus: Moment Statistics (Cont.)

Let U be a random matrix in ST°(Jac(C,2)) and ~ be the component
group generator. Denote

gf
to be the coefficient of T' in the characteristic polynomial of Uy*
(where 0 < k < ¢(p?)).
The nth moment M, [uf] is then the expected value of (g¥)", and we
compute this by integrating against the Haar measure. Once done,
we obtain moment statistics for the entire Sato-Tate group by taking
the average of the moments for U~*.

Note: Froby is defined up to conjugacy, so we can think of pa ¢(Frobp)-a matrix-as representing a conjugacy
class. Thus, working with ST(A) charpolys means inherently working with its conjugacy classes.



Bonus: Example of Moment Statistics: Cys

Let p =5 (g = 12). We first compute the characteristic polynomial of
each Uy*, where 0 < k < ¢(25) = 20.
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a multiple of 4.
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Even more surprising, g9 (k = 0) has the largest number of terms.
Naturally, this creates the most complicated integral...



Bonus: Example of Moment Statistics: Cys

Let p =5 (g = 12). We first compute the characteristic polynomial of
each Uy*, where 0 < k < ¢(25) = 20.

We found that the g¥ coefficient (the charpoly of Uy*) is 0, unless k is
a multiple of 4.

Even more surprising, g9 (k = 0) has the largest number of terms.
Naturally, this creates the most complicated integral...

When k = 0, M,[u9] is equal to the value of the following integral

% /2W~~/2W(cos(61)+~~~+cos(91o)

+ cos (=61 + 0s + 05 — 05 + 0s) + cos (=02 + 05 — 07 + 05 + 010))" dO; - - - dbo.

We can see degeneracy manifesting in the last two terms, since
we're taking the nth moment of just U here.



Bonus: Example of Moment Statistics: Cs (Cont.)

To compute M, [uf] for k = 4,8,12,16, we integrate

((;:j))zm /O. W /O 7T(COS (65) + cos (610))" dOsdbo,

where the numerator of the coefficient is 2" when k = 4,12 and
(—=2)" when k = 8,12.



Bonus: Example of Moment Statistics: Cs (Cont.)

To compute M, [uf] for k = 4,8,12,16, we integrate

((;:j))g /O. W /0 7T(COS (05) + cos (610))" dOsdbho,

where the numerator of the coefficient is 2" when k = 4,12 and
(=2)" when k = 8,12.

We then derive the full moment statistics M,[u] of the full Sato-Tate
group by averaging over the size of the group (i.e, compute up to
some moment for each restriction, then divide said moments by the
size of the group).



Bonus: L-Polynomials

For primes p of good reduction for C, the of Cis
- ZVHC(FE)TY  Lp(C,T)
Z(C/Fp, T) = exp <; . (TR

Define the normalized L-polynomial as

Lp(C,T) == Lp(C,T/V/P)
=T94+aT9 4+ @92+ + P+ a T+ 1,
where a; € [—(2,9), (2,9)} and g denotes the genus of C.

The coefficients of L,(C, T) contain important arithmetic information
about C

- The a4 coefficient is the trace of Frobenius:

a,=p +1— #C(Fp)



Bonus: Cyclicity of (Z/p*Z)*

- The map
f:Z/p*7 — Z/pZ

is a surjective ring homomorphism which restricts to a surjective
group homomorphism

g:(2/pZ)* — (Z/pZL)*.
- From the group homomorphism,
(Z/p*Z)* = ker(g) x (Z/pZ)*,

where ker(g) and (Z/pZ)* are finite cyclic groups of coprime
orders.

- Product of two cyclic groups of coprime orders is itself a cyclic
group, so (Z/p?Z)* is a cyclic group.
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