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The Sato-Tate Conjecture

Proposed by Mikio Sato and John Tate around 1960.

Mikio Sato (1928 - 2023) John Tate (1925 - 2019)
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The Sato-Tate Conjecture (Cont.)

Let C be a smooth, projective, genus g curve over Q.
• Originally posed when A is an elliptic curve (g = 1), can be
extended to higher-genus curves via Jac(C).

Denote the normalized L-polynomial of primes p of good reduction
for C as

Lp(C, T) = T2g + a1T2g−1 + a2T2g−2 + ...+ a2T2 + a1T+ 1.

As p→∞, we can realize distributions of Lp(C, T)’s coefficients as
moment sequences.

(Generalized) Sato-Tate Conjecture
As p→∞, the distribution of coefficients of Lp(C, T) converges to
the distributions of ST(Jac(C))’s conjugacy classes’ charpoly
coefficients via the Haar measure.

Note: For each prime p ∤ ℓ of good reduction, Frobp ∈ Gal(F/F) is mapped to a conjugacy class under ρA,ℓ in
ST(Jac(Cp2 )). The conjecture is equivalent to talking about limiting distributions of Frobenius elements’
conjugacy classes 2
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Our Case

We are studying the family of (hyperelliptic) curves

Cp2 : y2 = xp
2
− 1,

where p is an odd prime.

Cp2 exhibits complex multiplication (CM) by Q(ζp2). By the results of
[Joh17], this means the Sato-Tate conjecture is true for Cp2 !

We want to see what ST(Jac(Cp2)) and its distributions look like.
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Computing Sato-Tate Groups

We need to compute two objects:

ST0(Jac(Cp2)) and ST(Jac(Cp2))/ ST0(Jac(Cp2)).
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Computing ST(Jac(Cp2))/ ST0(Jac(Cp2))

First, we have that the endomorphism field of Jac(Cp2) is Q(ζp2)

([GGL24, Prop. 3.5.1]). By [GGL25, Thm. 7.2.12], this is also its connected
monodromy field. So,

ST(Jac(Cp2))/ ST0(Jac(Cp2)) ∼= Gal(Q(ζp2)/Q).

Moreover
Gal(Q(ζp2)/Q) ∼= (Z/p2Z)×,

so ST(Jac(Cp2))/ ST0(Jac(Cp2)) is cyclic (because (Z/p2Z)× is) and
has order ϕ(p2).

To find a generator of ST(Jac(Cp2))/ ST0(Jac(Cp2)), we study
endomorphisms of Jac(Cp2) acted on by Gal(Q(ζp2)/Q).
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Computing ST(Jac(Cp2))/ ST0(Jac(Cp2)) (Cont.)

Let Z := − diag(ζp2 , ζp2). Endomorphisms of Jac(Cp2) are of the form

α = diag(Z, Z2, Z3, ..., Zg),

where g = (p2 − 1)/2 is the genus of Cp2 .

By computing a 〈σa〉 = Gal(Q(ζp2)/Q) (through Sage), the action of σa
on α (σaZt = Zat) either only permutes or permutes and conjugates
entries of α. Tracking this behavior gives the component group
generator.

Let I be the 2× 2 identity matrix,

J :=
(
0 1
−1 0

)
,

and 〈n〉p2 denote n (mod p2).
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Computing ST(Jac(Cp2))/ ST0(Jac(Cp2)) (Cont.)

Proposition [CGHM25]
The 2g× 2g matrix γ (in USp(2g)) defined by

γ[i, j] =


I if j = 〈ai〉p2
J if j = p2 − 〈ai〉p2
0 otherwise.

generates the component group of ST(Jac(Cp2)).

Proof idea:

• Show that γαγ−1 = σaα (shows that γ ∈ ST(Jac(Cp2)))
• |γ| = ϕ(p2) (order is equal to that of the component group).
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Example of a Component Group Generator: C25

When p = 5, using σ2 as a generator for Gal(Q(ζ25)/Q) (found via
Sage) gives

γ =



0 I 0 0 0 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0 0 0 0
0 0 0 0 0 I 0 0 0 0 0 0
0 0 0 0 0 0 0 I 0 0 0 0
0 0 0 0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 0 0 0 0 I
0 0 0 0 0 0 0 0 0 0 J 0
0 0 0 0 0 0 0 0 J 0 0 0
0 0 0 0 0 0 J 0 0 0 0 0
0 0 0 0 J 0 0 0 0 0 0 0
0 0 J 0 0 0 0 0 0 0 0 0
J 0 0 0 0 0 0 0 0 0 0 0



.

Here, g = (25− 1)/2 = 12. So, γ is a 24× 24 matrix. For p = 7, γ is a
48× 48 matrix!
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The Identity Component, ST0(Jac(Cp2))

Since Jac(Cp2) is an abelian variety with CM, we have that

ST0(Jac(Cp2)) ∼= Hg(Jac(Cp2)),

where Hg(Jac(Cp2)) is the Hodge group of Jac(Cp2).

We have that

Proposition [CGHM25]
Hg(Jac(Cp2)) ∼= U(1)g′ , where g′ = ϕ(p2)/2.

Proof idea:

• Jac(Cp2) ∼ Jac(Cp)× Xp2 and MT(Jac(Cp2)) ∼= MT(Xp2) by
[GGL24]

• Hg(Jac(Cp2)) ∼= Hg(Xp2) ∼= L(Xp2) ∼= U(1)g′ .

Note: We embed U(1) in SU(2) via u 7→ U = diag(u, u), and U(1)n := 〈diag(U1, ..., Un) | Ui ∈ U(1)〉 9
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The Identity Component (Cont.)

This result tells us that Hg(Jac(Cp2)) is smaller than expected—since
Jac(Cp2) has CM, it’d ”normally” be isomorphic to U(1)g.

This is reflected by the fact that Jac(Cp2) is degenerate (by [Goo24]).

Definition
An abelian variety A is degenerate if its Hodge ring

B∗(A) :=
dim(A)∑
d=0

Bd(A),

where Bd(A) is the C-span of the Hodge classes of codimension d
on A, contains exceptional (Hodge) classes—Hodge classes not
generated by classes of codimension d = 1 (i.e., divisor classes).

Since ST(Jac(Cp2)) ⊆ USp(2g) and g− g′ = (p− 1)/2, if we identified
an element of Hg(Jac(Cp2)) with a U ∈ U(1)g, p− 1 entries of U are
dependent on other entries of U.
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Extracting the Dependencies

Informally, the Hodge ring is made up of the classes that are fixed by
the Hodge group ([BL04, Thm. 17.3.3]). So, if U ∈ Hg(Jac(Cp2)) (as a
matrix) and v is a Hodge class (in the Hodge ring), then

U · v = v.

This action is how we’ll extract the extra relations.

Identifying the Hodge group with an element from U(1)g′ already
incorporates the relations from the divisor classes—it’s just

diag(U1,U1,U2,U2, ...Ug′ ,Ug′),

where Ui ∈ U(1) and UiUi = 1. The non-divisor class Hodge classes
have to come from higher codimensions.

We look at the indecomposable Hodge classes—exceptional classes
not generated by classes of lower codimension.
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Redefining Indecomposable Classes

In [Shi82], Shioda defines a set of tuples that act as an index set for
Hodge classes of codimension d:

Definition [CGHM25]
Let m be a positive, odd integer and d be an integer satisfying
1 ≤ d ≤ m−1

2 . We define the set

Bd
m := {β = (b1,b2, . . . ,b2d)}

to be the set of tuples of length 2d satisfying the following
properties:

1. 1 ≤ b1 < b2 < · · · < b2d ≤ m− 1;
2.
∑2d

i=1 bi ≡ 0 (mod m);
3. |t · β| = d for all t ∈ (Z/mZ)×, where |t · β| =

∑2d
i=1〈tbi〉m/m.
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Redefining Indecomposable Classes (Cont.)

Namely, he showed that there is a correspondence between tuples in
Bd
m to Hodge classes:

[Shi82, Thm. 5.2]
Assume m is odd. The Hodge classes on the Jacobian variety
Jac(Cm) have the following description:

Bd(Jac(Cm)) =
⊕

(b1,...,b2d)∈Bd
m

Cωb1 ∧ · · · ∧ ωb2d .

So
(b1,b2, . . . ,b2d)←→ ωb1 ∧ ωb2 ∧ · · · ∧ ωb2d .

13



Redefining Indecomposable Classes (Cont.)

So we can frame exceptional-ness and indecomposible-ness in terms
of tuples:

Definition [CGHM25]
We say that a tuple β ∈ Bd

m is exceptional if it’s not entirely made
up of pairs bi,bj such that bi + bj ≡ 0 (mod m).
We say that β ∈ Bd

m is indecomposable if no proper subset (with an
even number of elements) of {b1,b2, . . . ,b2d} adds to a multiple of
m. Otherwise, we say that β is decomposable.

Example: m = p2 = 9, d = (3+ 1)/2 = 2
• (1, 4, 6, 7) and (2, 3, 5, 8) are exceptional and indecomposable,
but (1, 2, 7, 8) isn’t exceptional

Example: m = p2 = 25, d = 4
• (1, 2, 6, 11, 16, 20, 21, 23) is exceptional, but not indecomposable
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Our Case: m = p2

In the proof of [Shi82, Lemma 5.5], Shioda defined a family of
indecomposable tuples of codimension d = (p+ 1)/2: For
1 ≤ i ≤ p− 1, define

βi := (i, i+ p, i+ 2p, . . . , i+ (p− 1)p,p(p− i)).

(We write βi to signify the tuple’s entries have been permuted to be
an element of Bd

m)

It turns out, all indecomposable tuples (when m = p2) come from βi.
Meaning, the only codimension where indecomposable classes exist
is d = (p+ 1)/2 ([CGHM25, Thm. 3.21]).

Furthermore, there are exactly p− 1 many of these tuples when
m = p2 ([CGHM25, Thm. 3.21]).
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The Indecomposable Classes Characterized

Using the above correspondence, this means

[CGHM25, Cor. 3.22]
From each indecomposable tuple

βi := (i, i+ p, i+ 2p, . . . , i+ (p− 1)p,p(p− i)),

the indecomposable Hodge classes of codimension (p+ 1)/2 are
given by

νi = ωi ∧ ωi+p ∧ ωi+2p ∧ · · · ∧ ωi+(p−1)p ∧ ωp(p−i),

where 1 ≤ i ≤ p− 1.

16



An Adjustment

We’ll modify the elements of βi such that every entry bj with
j > d = p+1

2 is written as bj − p2. This modification will negate
elements of the tuple whose value is greater than p2

2 . This
corresponds to expressing the differential ωbj as ωp2−bj .

After modifying the tuples in this way, we obtain pairs of tuples such
that each βi is paired with the corresponding tuple βp−i, where both
are negatives of each other.
Ex: p2 = 9

• β1 = (1, 4, 6, 7)→ (1, 4,−3,−2)←→ ν1 = ω1 ∧ ω4 ∧ ω3 ∧ ω2

• β2 = (2, 3, 5, 8)→ (2, 3,−4,−1)←→ ν2 = ω2 ∧ ω3 ∧ ω4 ∧ ω1

We read off the effect of the Hodge group in every new βi. So, it’s
sufficient to just focus on the tuples βi where 1 ≤ i ≤ p−1

2 .
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New Expression of Indecomposable Classes

From that adjustment of each βi, we obtain a new expression of the
indecomposable Hodge classes

[CGHM25, Cor. 3.26]
Let 1 ≤ i ≤ p−1

2 . Then

νi = ωi ∧ ωi+p ∧ ωi+2p ∧ · · · ∧ ωi+p p−1
2
∧ ωp p−1

2 −i ∧ · · · ∧ ωp−i ∧ ωpi.
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The Indecomposable Classes Characterized (Cont.)

By the group action U · νi = νi, when νi is an indecomposable class
we have

U · νi = U · (ωi ∧ ωi+p ∧ ωi+2p ∧ · · · ∧ ωi+p p−1
2
∧ ωp p−1

2 −i ∧ · · · ∧ ωp−i ∧ ωpi)

= (uiui+pui+2p · · ·ui+p p−1
2
up p−1

2 −i · · ·up−iupi)νi.

Since the Hodge group fixes elements from the Hodge ring, we have
that

uiui+pui+2p · · ·ui+p p−1
2
up p−1

2 −i · · ·up−iupi = 1.

The largest subscript is i+ p p−12 , so isolating it gives

ui+p p−1
2

= uiui+pui+2p · · ·ui+p p−3
2
up p−1

2 −i · · ·up−iupi
and

ui+p p−1
2

= uiui+pui+2p · · ·ui+p p−3
2
up p−1

2 −i · · ·up−iupi.

These are exactly the missing relations!
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The Identity Component, Revisited

By the previous slide, we can now express ST0(Jac(Cp2)):

[CGHM25, Prop. 4.1]
The identity component of the Sato-Tate group of Jac(Cp2) is
isomorphic to U(1)g′ . We can identify elements of the identity
component with matrices U = diag(U1,U2, . . . ,Ug) in U(1)g where

Ui+p p−1
2

= UiUi+pUi+2p · · ·Ui+p p−3
2
Up p−1

2 −i · · ·Up−iUpi

for 1 ≤ i ≤ p−1
2 .

Recall Ui = diag(ui, ui) 20



Example of Identity Component: C25

Let p = 5. The genus of C25 is g = (25− 1)/2 = 12. The only
indecomposable tuples are

(1, 6, 11, 16, 20, 21), (2, 7, 12, 15, 17, 22), (3, 8, 10, 13, 18, 23), (4, 5, 9, 14, 19, 24)

and they’re all of the form βi with 1 ≤ i ≤ 4.

We select the first two tuples and adjust each entry of the tuple
whose value is greater than p2/2 = 12.5 to obtain

β1 = (1, 6, 11,−9,−5,−4) β2 = (2, 7, 12,−10,−8,−3).

These correspond to the Hodge classes

ν1 = ω1∧ω6∧ω11∧ω9∧ω5∧ω4 and ν2 = ω2∧ω7∧ω12∧ω10∧ω8∧ω3.

Let U ∈ U(1)g. We get the following relations among entries of U

u11 = u1u4u5u6u9 and u12 = u2u3u7u8u10,

giving us the identity component

U = diag(U1,U2, ...,U10, U1U4U5U6U9, U2U3U7U8U10). 21



The Sato-Tate Group of Jac(Cp2)

[CGHM25, Thm. 4.6]

Let g = p2−1
2 be the genus of the curve Cp2 and let g′ = p(p−1)

2 . The
Sato-Tate group of Jac(Cp2), up to isomorphism in USp(2g), is given
by

ST(Jac(Cp2)) ' 〈U(1)g
′
, γ〉,

where the embedding of U(1)g′ in USp(2g) is described in Slide 21.

22



(a1) Moment Statistics of C25

The numerical moments coming from the a1 coefficient of the
normalized L-polynomial were computed up to primes p < 225

M2 M4 M6 M8

a1 2.009 90.848 9452.007 1438061.241
µ1 2 90 9344 1419866

Table 1: Table of a1- and µ1-moments for C25 : y2 = x25 − 1 (with p < 225).

Figure 1: Histogram of the a1-coefficients for C25 : y2 = x25 − 1.
23



Thank you!

Read our paper!

or search Degeneracy and Sato-Tate Groups of y2 = xp2 − 1
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Bonus: Sato-Tate Group Definition

For an abelian variety A of dimension g over a field F and prime ℓ, the
Galois action on the Tate module is given by an ℓ-adic representation

ρA,ℓ : Gal(F/F)→ Aut(Vℓ) ∼= GL2g,Qℓ
,

where Vℓ is the rational Tate module.

The ℓ-adic monodromy group of A, denoted as GA,ℓ, is the Zariski
closure of the image of this map over GL2g,Qℓ

. Additionally, let
G1A,ℓ := GA,ℓ ∩ Sp2g,Qℓ

.

Definition [Goo24, Sec. 2.4]
The Sato-Tate group of A, denoted as ST(A), is a maximal compact
Lie subgroup of G1A,ℓ ⊗Qℓ

C contained in USp(2g).



Bonus: Moment Statistics

Moment statistics from the ST(Jac(Cp2)) are called theoretical
moments, whereas those from the normalized L-polynomials are
called numerical moments.

By the isomorphism of ST(Jac(Cp2)), we can compute moments by
working with 〈U(1)g′ , γ〉 instead.
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Bonus: Moment Statistics (Cont. + Some Background)

For the unitary group U(1), the trace map tr on a random element
U ∈ U(1) is given by z := tr(U) = u+ u = 2 cos(θ), where u = eiθ . Then
dz = −2 sin(θ)dθ and

µU(1) =
1
2π

dz√
4− z2

=
1
2πdθ

gives a uniform measure of U(1) on the eigenangle θ ∈ [−π, π] (see
[Sut19, Section 2]). The nth moment Mn[µ] is the expected value of
ϕn : z 7→ zn with respect to µ, computed as

Mn[µ] =

∫
I
znµ(z),

where I = [−2, 2].



Bonus: Moment Statistics (Cont.)

Let U be a random matrix in ST0(Jac(Cp2)) and γ be the component
group generator. Denote

gki
to be the coefficient of Ti in the characteristic polynomial of Uγk
(where 0 ≤ k ≤ ϕ(p2)).

The nth moment Mn[µ
k
i ] is then the expected value of (gki )n, and we

compute this by integrating against the Haar measure. Once done,
we obtain moment statistics for the entire Sato-Tate group by taking
the average of the moments for Uγk.

Note: Frobp is defined up to conjugacy, so we can think of ρA,ℓ(Frobp)–a matrix–as representing a conjugacy
class. Thus, working with ST(A) charpolys means inherently working with its conjugacy classes.
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Bonus: Example of Moment Statistics: C25

Let p = 5 (g = 12). We first compute the characteristic polynomial of
each Uγk, where 0 ≤ k ≤ ϕ(25) = 20.

We found that the gk1 coefficient (the charpoly of Uγk) is 0, unless k is
a multiple of 4.

Even more surprising, g01 (k = 0) has the largest number of terms.
Naturally, this creates the most complicated integral...
When k = 0, Mn[µ

0
1 ] is equal to the value of the following integral

2n
(2π)10

∫ 2π

0
· · ·

∫ 2π

0
(cos (θ1) + · · ·+ cos (θ10)

+ cos (−θ1 + θ4 + θ5 − θ6 + θ9) + cos (−θ2 + θ3 − θ7 + θ8 + θ10))
n dθ1 · · ·dθ10.

We can see degeneracy manifesting in the last two terms, since
we’re taking the nth moment of just U here.
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Bonus: Example of Moment Statistics: C25 (Cont.)

To compute Mn[µ
k
1 ] for k = 4, 8, 12, 16, we integrate

(±2)n
(2π)2

∫ 2π

0

∫ 2π

0
(cos (θ5) + cos (θ10))

n dθ5dθ10,

where the numerator of the coefficient is 2n when k = 4, 12 and
(−2)n when k = 8, 12.

We then derive the full moment statistics Mn[µ1] of the full Sato-Tate
group by averaging over the size of the group (i.e., compute up to
some moment for each restriction, then divide said moments by the
size of the group).
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Bonus: L-Polynomials

For primes p of good reduction for C, the zeta function of C is

Z(C/Fp, T) := exp

( ∞∑
k=1

#C(Fpk)Tk

k

)
=

Lp(C, T)
(1− T)(1− pT) .

Define the normalized L-polynomial as

Lp(C, T) := Lp(C, T/
√p)

= T2g + a1T2g−1 + a2T2g−2 + · · ·+ a2T2 + a1T+ 1,

where ai ∈
[
−
(2g
i
)
,
(2g
i
)]
and g denotes the genus of C.

The coefficients of Lp(C, T) contain important arithmetic information
about C

• The a1 coefficient is the trace of Frobenius:

a1 = p+ 1−#C(Fp).



Bonus: Cyclicity of (Z/p2Z)×

• The map
f : Z/p2Z→ Z/pZ

is a surjective ring homomorphism which restricts to a surjective
group homomorphism

g : (Z/p2Z)× → (Z/pZ)×.

• From the group homomorphism,

(Z/p2Z)× ∼= ker(g)× (Z/pZ)×,

where ker(g) and (Z/pZ)× are finite cyclic groups of coprime
orders.

• Product of two cyclic groups of coprime orders is itself a cyclic
group, so (Z/p2Z)× is a cyclic group.
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