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Some Motivation

Every day, millions of people (including you!) make
transactions, store, and interact with data online...

Safeguarding sensitive information is of extreme importance...

One way to encrypt online information is through Elliptic
Curve Cryptography (ECC)!

ECC aims to use the theory behind elliptic (and related) curves
to hide data from unauthorized users.

In fact, ECC is one of the most efficient ways to encrypt online
data!
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Elliptic Curves
Elliptic curves are equations of the form

y2 = x3 +Ax+B,

where A and B are constants.

Figure: y2 = x3 − 4x+ 6 Figure: y2 = x(x+ 1)(x− 2)



The Catch

We’re interested in curves defined over sets that are finite in
size!

More specifically, a finite field Fq.
q is a prime number

So, a curve over Fq will have finitely many points, rather than
infinitely many.
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Our Work

We are studying the curve

yp = x(xp − 1),

where p is a prime number.

Goal: Determine the number of points on this
curve defined over Fq as q → ∞.

I’ll be talking about the case p = 5, i.e.

y5 = x(x5 − 1),

a genus 10 curve.
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Stepping Stones

In the 1940s, french mathematician André Weil proved the
following (Hasse-Weil bound):

|q + 1−#C(Fq)| ≤ 2g
√
q.

The number of points on a curve C, denoted as #C(Fq), is
approximately q + 1, and differ by at most 2g

√
q, where g is the

curve’s genus.

Let tq= |q + 1−#C(Fq)|. Dividing both sides by
√
q gives

a1 =
tq√
q =⇒ −2g ≤ a1 ≤ 2g =⇒ −20 ≤ a1 ≤ 20.

Aim: Determine the distribution of a1 as q → ∞
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following (Hasse-Weil bound):

|q + 1−#C(Fq)| ≤ 2g
√
q.

The number of points on a curve C, denoted as #C(Fq), is
approximately q + 1, and differ by at most 2g

√
q, where g is the

curve’s genus.

Let tq= |q + 1−#C(Fq)|. Dividing both sides by
√
q gives

a1 =
tq√
q =⇒ −2g ≤ a1 ≤ 2g =⇒ −20 ≤ a1 ≤ 20.

Aim: Determine the distribution of a1 as q → ∞



Stepping Stones

In the 1940s, french mathematician André Weil proved the
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The Sato-Tate Conjecture

Proposed by Mikio Sato and John Tate in the 1960s.

Conjecture (Generalized Sato-Tate Conjecture)

As p → ∞, the distribution converges to the distribution of
traces in the Sato-Tate group, a compact subgroup of USp(2g)
associated to the Jacobian of the curve.

These curves have an associated Sato-Tate group, which is a set
of matrices. Computing the characteristic polynomial of each
element gives the element’s trace, which reveals certain
behaviors about the number of points on the curve!
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The Sato-Tate Group for p = 5

Theorem (Goodson, Hoque)

Let C5 be the genus g = 10 curve y5 = x(x5 − 1). Then, up to
conjugation in USp(2g), the Sato-Tate group of the Jacobian is

ST(Jac(C5)) = ⟨U(1)10, γ⟩,

where γ is the 10× 10 block matrix

I
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I


.



What is the a1 Distribution?

Now that we have the ST group for our curve, we can compute
the traces of each U(1)10 · γi, where 0 ≤ i ≤ 19.

This leads us to compute moment statistics, a statistical tool
used to numerically describe a data set through its average
value, variance, skewness, and more!

[1, 0, 1, 0, 57, 0, 5140]

The numerical moments calculated from
tq√
q , up to q<222, get

close to the moments generated by the group, validating the ST
conjecture!

[-0.00050968, 0.993906, 0.00368233, 14.8362, 0.25881, 304.502,
7.78995]
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Visualizing a1

Figure: All primes q Figure: Primes q ≡ 1 (mod 25)



Future Work

• Work on other curves of the form yp = x(xp − 1).

• Can we generalize the behavior?

• What happens when we vary the first x term?

• i.e. yp = xa(xp − 1)

• Find moment statistics for a2, a3, . . . , an!



Bonus Slide: More Distributions!

Figure: a1 distribution of a genus 2 curve

(image credit: Goodson)



Bonus Slide: More Distributions!

Figure: a1 distribution of a genus 3 curve

(image credit: Goodson)



Bonus Slide: More Distributions!

Figure: a2 distribution of a genus 3 curve

(image credit: Goodson)


